Google
 

Saturday, October 27, 2007

Learn Electronics - Relays


In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.

In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.


In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radioteletype.In some electronic devices, it is inconvenient to place a switch exactly where it should
be. For example, you might want to switch a communications line from one branch to
another from a long distance away. In many radio transmitters, the wiring carries
high-frequency alternating currents that must be kept within certain parts of the circuit,
and not routed out to the front panel for switching. A relay makes use of a solenoid
to allow remote-control switching.
A diagram of a relay is shown in Fig. 8-8. The movable lever, called the armature,
is held to one side by a spring when there is no current flowing through the electromagnet.
Under these conditions, terminal X is connected to Y, but not to Z. When a sufficient
current is applied, the armature is pulled over to the other side. This disconnects
terminal X from terminal Y, and connects X to Z.
There are numerous types of relays used for different purposes. Some are meant for
use with dc, and others are for ac; a few will work with either type of current. A normally
closed relay completes the circuit when there is no current flowing in its electromagnet,
and breaks the circuit when current flows. A normally open relay is just the opposite.
(“Normal” in this sense means no current in the coil.) The relay in the illustration (Fig.
8-8) can be used either as a normally open or normally closed relay, depending on which
contacts are selected. It can also be used to switch a line between two different circuits.
Some relays have several sets of contacts. Some relays are meant to remain in one
state (either with current or without) for a long time, while others are meant to switch
several times per second. The fastest relays work dozens of times per second. These are
used for such purposes as keying radio transmitters in Morse code or radio teletype.


Today's partners' link

Title
Hundhalsband hunds�ng hundkl�der
URL
http://www.hundhalsband.net/
Description
Hitta hundhalsband och hundprylar hos www.hundhalsband.net. Vi listar allt till hunden: hundkoppel, hunds�ng, hundsele och hundsmycke.


Title
Add Links - Raise Web Ranking - Networking Links
URL
http://www.thatfhatass.com/links
Description
The most efficient way to raise web rankings for your site is to you add links

Free ebooks,rapidshare,great blog,megaupload,frantic ramblings,ideas,home equity loans,learn electronics,download
Powered By Blogger